Skip to main content

One post tagged with "DeepSeek"

View All Tags

DeepSeek’s Open-Source Revolution: Insights from a Closed-Door AI Summit

· 6 min read
Lark Birdy
Chief Bird Officer

DeepSeek’s Open-Source Revolution: Insights from a Closed-Door AI Summit

DeepSeek is taking the AI world by storm. Just as discussions around DeepSeek-R1 hadn’t cooled, the team dropped another bombshell: an open-source multimodal model, Janus-Pro. The pace is dizzying, the ambitions clear.

DeepSeek’s Open-Source Revolution: Insights from a Closed-Door AI Summit

Two days ago, a group of top AI researchers, developers, and investors gathered for a closed-door discussion hosted by Shixiang, focusing exclusively on DeepSeek. Over three hours, they dissected DeepSeek’s technical innovations, organizational structure, and the broader implications of its rise—on AI business models, secondary markets, and the long-term trajectory of AI research.

Following DeepSeek’s ethos of open-source transparency, we’re opening up our collective thoughts to the public. Here are distilled insights from the discussion, spanning DeepSeek’s strategy, its technical breakthroughs, and the impact it could have on the AI industry.

DeepSeek: The Mystery & the Mission

  • DeepSeek’s Core Mission: CEO Liang Wenfeng isn’t just another AI entrepreneur—he’s an engineer at heart. Unlike Sam Altman, he’s focused on technical execution, not just vision.
  • Why DeepSeek Earned Respect: Its MoE (Mixture of Experts) architecture is a key differentiator. Early replication of OpenAI’s o1 model was just the start—the real challenge is scaling with limited resources.
  • Scaling Up Without NVIDIA’s Blessing: Despite claims of having 50,000 GPUs, DeepSeek likely operates with around 10,000 aging A100s and 3,000 pre-ban H800s. Unlike U.S. labs, which throw compute at every problem, DeepSeek is forced into efficiency.
  • DeepSeek’s True Focus: Unlike OpenAI or Anthropic, DeepSeek isn’t fixated on “AI serving humans.” Instead, it’s pursuing intelligence itself. This might be its secret weapon.

Explorers vs. Followers: AI’s Power Laws

  • AI Development is a Step Function: The cost of catching up is 10x lower than leading. The “followers” leverage past breakthroughs at a fraction of the compute cost, while the “explorers” must push forward blindly, shouldering massive R&D expenses.
  • Will DeepSeek Surpass OpenAI? It’s possible—but only if OpenAI stumbles. AI is still an open-ended problem, and DeepSeek’s approach to reasoning models is a strong bet.

The Technical Innovations Behind DeepSeek

1. The End of Supervised Fine-Tuning (SFT)?

  • DeepSeek’s most disruptive claim: SFT may no longer be necessary for reasoning tasks. If true, this marks a paradigm shift.
  • But Not So Fast… DeepSeek-R1 still relies on SFT, particularly for alignment. The real shift is how SFT is used—distilling reasoning tasks more effectively.

2. Data Efficiency: The Real Moat

  • Why DeepSeek Prioritizes Data Labeling: Liang Wenfeng reportedly labels data himself, underscoring its importance. Tesla’s success in self-driving came from meticulous human annotation—DeepSeek is applying the same rigor.
  • Multi-Modal Data: Not Ready Yet—Despite the Janus-Pro release, multi-modal learning remains prohibitively expensive. No lab has yet demonstrated compelling gains.

3. Model Distillation: A Double-Edged Sword

  • Distillation Boosts Efficiency but Lowers Diversity: This could cap model capabilities in the long run.
  • The “Hidden Debt” of Distillation: Without understanding the fundamental challenges of AI training, relying on distillation can lead to unforeseen pitfalls when next-gen architectures emerge.

4. Process Reward: A New Frontier in AI Alignment

  • Outcome Supervision Defines the Ceiling: Process-based reinforcement learning may prevent hacking, but the upper bound of intelligence still hinges on outcome-driven feedback.
  • The RL Paradox: Large Language Models (LLMs) don't have a defined win condition like chess. AlphaZero worked because victory was binary. AI reasoning lacks this clarity.

Why Hasn’t OpenAI Used DeepSeek’s Methods?

  • A Matter of Focus: OpenAI prioritizes scale, not efficiency.
  • The “Hidden AI War” in the U.S.: OpenAI and Anthropic might have ignored DeepSeek’s approach, but they won’t for long. If DeepSeek proves viable, expect a shift in research direction.

The Future of AI in 2025

  • Beyond Transformers? AI will likely bifurcate into different architectures. The field is still fixated on Transformers, but alternative models could emerge.
  • RL’s Untapped Potential: Reinforcement learning remains underutilized outside of narrow domains like math and coding.
  • The Year of AI Agents? Despite the hype, no lab has yet delivered a breakthrough AI agent.

Will Developers Migrate to DeepSeek?

  • Not Yet. OpenAI’s superior coding and instruction-following abilities still give it an edge.
  • But the Gap is Closing. If DeepSeek maintains momentum, developers might shift in 2025.

The OpenAI Stargate $500B Bet: Does It Still Make Sense?

  • DeepSeek’s Rise Casts Doubt on NVIDIA’s Dominance. If efficiency trumps brute-force scaling, OpenAI’s $500B supercomputer may seem excessive.
  • Will OpenAI Actually Spend $500B? SoftBank is the financial backer, but it lacks the liquidity. Execution remains uncertain.
  • Meta is Reverse-Engineering DeepSeek. This confirms its significance, but whether Meta can adapt its roadmap remains unclear.

Market Impact: Winners & Losers

  • Short-Term: AI chip stocks, including NVIDIA, may face volatility.
  • Long-Term: AI’s growth story remains intact—DeepSeek simply proves that efficiency matters as much as raw power.

Open Source vs. Closed Source: The New Battlefront

  • If Open-Source Models Reach 95% of Closed-Source Performance, the entire AI business model shifts.
  • DeepSeek is Forcing OpenAI’s Hand. If open models keep improving, proprietary AI may be unsustainable.

DeepSeek’s Impact on Global AI Strategy

  • China is Catching Up Faster Than Expected. The AI gap between China and the U.S. may be as little as 3-9 months, not two years as previously thought.
  • DeepSeek is a Proof-of-Concept for China’s AI Strategy. Despite compute limitations, efficiency-driven innovation is working.

The Final Word: Vision Matters More Than Technology

  • DeepSeek’s Real Differentiator is Its Ambition. AI breakthroughs come from pushing the boundaries of intelligence, not just refining existing models.
  • The Next Battle is Reasoning. Whoever pioneers the next generation of AI reasoning models will define the industry’s trajectory.

A Thought Experiment: If you had one chance to ask DeepSeek CEO Liang Wenfeng a question, what would it be? What’s your best piece of advice for the company as it scales? Drop your thoughts—standout responses might just earn an invite to the next closed-door AI summit.

DeepSeek has opened a new chapter in AI. Whether it rewrites the entire story remains to be seen.