メインコンテンツにスキップ

"AI"でタグ付けされた1 投稿

すべてのタグを見る

The Designer in the Machine: How AI is Reshaping Product Creation

· 1 分読了
Lark Birdy
Chief Bird Officer

We’re witnessing a seismic shift in digital creation. Gone are the days when product design and development relied solely on manual, human-driven processes. Today, AI is not just automating tasks—it’s becoming a creative partner, transforming how we design, code, and personalize products.

But what does this mean for designers, developers, and founders? Is AI a threat or a superpower? And which tools truly deliver? Let’s explore.

The New AI Design Stack: From Concept to Code

AI is reshaping every stage of product creation. Here’s how:

1. UI/UX Generation: From Blank Canvas to Prompt-Driven Design

Tools like Galileo AI and Uizard turn text prompts into fully-formed UI designs in seconds. For example, a prompt like “Design a modern dating app home screen” can generate a starting point, freeing designers from the blank canvas.

This shifts the designer’s role from pixel-pusher to prompt engineer and curator. Platforms like Figma and Adobe are also integrating AI features (e.g., Smart Selection, Auto Layout) to streamline repetitive tasks, allowing designers to focus on creativity and refinement.

2. Code Generation: AI as Your Coding Partner

GitHub Copilot, used by over 1.3 million developers, exemplifies AI’s impact on coding. It doesn’t just autocomplete lines—it generates entire functions based on context, boosting productivity by 55%. Developers describe it as a tireless junior programmer who knows every library.

Alternatives like Amazon’s CodeWhisperer (ideal for AWS environments) and Tabnine (privacy-focused) offer tailored solutions. The result? Engineers spend less time on boilerplate and more on solving unique problems.

3. Testing and Research: Predicting User Behavior

AI tools like Attention Insight and Neurons predict user interactions before testing begins, generating heatmaps and identifying potential issues. For qualitative insights, platforms like MonkeyLearn and Dovetail analyze user feedback at scale, uncovering patterns and sentiments in minutes.

4. Personalization: Tailoring Experiences at Scale

AI is taking personalization beyond recommendations. Tools like Dynamic Yield and Adobe Target enable interfaces to adapt dynamically based on user behavior—reorganizing navigation, adjusting notifications, and more. This level of customization, once reserved for tech giants, is now accessible to smaller teams.

The Real-World Impact: Speed, Scale, and Creativity

1. Faster Iteration

AI compresses timelines dramatically. Founders report going from concept to prototype in days, not weeks. This speed encourages experimentation and reduces the cost of failure, fostering bolder innovation.

2. Doing More with Less

AI acts as a force multiplier, enabling small teams to achieve what once required larger groups. Designers can explore multiple concepts in the time it took to create one, while developers maintain codebases more efficiently.

3. A New Creative Partnership

AI doesn’t just execute tasks—it offers fresh perspectives. As one designer put it, “The AI suggests approaches I’d never consider, breaking me out of my patterns.” This partnership amplifies human creativity rather than replacing it.

What AI Can’t Replace: The Human Edge

Despite its capabilities, AI falls short in key areas:

  1. Strategic Thinking: AI can’t define business goals or deeply understand user needs.
  2. Empathy: It can’t grasp the emotional impact of a design.
  3. Cultural Context: AI-generated designs often feel generic, lacking the cultural nuance human designers bring.
  4. Quality Assurance: AI-generated code may contain subtle bugs or vulnerabilities, requiring human oversight.

The most successful teams view AI as augmentation, not automation—handling routine tasks while humans focus on creativity, judgment, and connection.

Practical Steps for Teams

  1. Start Small: Use AI for ideation and low-risk tasks before integrating it into critical workflows.
  2. Master Prompt Engineering: Crafting effective prompts is becoming as vital as traditional design or coding skills.
  3. Review AI Outputs: Establish protocols to validate AI-generated designs and code, especially for security-critical functions.
  4. Measure Impact: Track metrics like iteration speed and innovation output to quantify AI’s benefits.
  5. Blend Approaches: Use AI where it excels, but don’t force it into tasks better suited to traditional methods.

What’s Next? The Future of AI in Design

  1. Tighter Design-Development Integration: Tools will bridge the gap between Figma and code, enabling seamless transitions from design to functional components.
  2. Context-Aware AI: Future tools will align designs with brand standards, user data, and business goals.
  3. Radical Personalization: Interfaces will adapt dynamically to individual users, redefining how we interact with software.

Conclusion: The Augmented Creator

AI isn’t replacing human creativity—it’s evolving it. By handling routine tasks and expanding possibilities, AI frees designers and developers to focus on what truly matters: creating products that resonate with human needs and emotions.

The future belongs to the augmented creator—those who leverage AI as a partner, combining human ingenuity with machine intelligence to build better, faster, and more meaningful products.

As AI advances, the human element becomes not less important, but more crucial. Technology changes, but the need to connect with users remains constant. That’s a future worth embracing.

AI コンテキストの壁を打破する: モデルコンテキストプロトコルの理解

· 1 分読了
Lark Birdy
Chief Bird Officer

私たちはよく、より大きなモデル、より広いコンテキストウィンドウ、そしてより多くのパラメータについて話します。しかし、本当のブレークスルーはサイズに関するものではないかもしれません。モデルコンテキストプロトコル (MCP) は、AI アシスタントが周囲の世界とどのように相互作用するかにおけるパラダイムシフトを表しており、それは今まさに起こっています。

MCP アーキテクチャ

AI アシスタントの本当の問題

開発者なら誰もが知っているシナリオがあります。コードのデバッグを手伝うために AI アシスタントを使用していますが、それがリポジトリを確認できない場合です。また、市場データについて尋ねても、その知識が数か月前のものである場合です。根本的な制限は AI の知能ではなく、現実世界にアクセスできないことです。

大規模言語モデル (LLM) は、トレーニングデータだけを持つ部屋に閉じ込められた優秀な学者のようなものでした。どんなに賢くなっても、現在の株価を確認したり、コードベースを見たり、ツールと対話したりすることはできませんでした。今までは。

モデルコンテキストプロトコル (MCP) の登場

MCP は、AI アシスタントが外部システムとどのように相互作用するかを根本的に再考します。ますます大きなパラメータモデルにより多くのコンテキストを詰め込もうとする代わりに、MCP は AI が必要に応じて情報やシステムに動的にアクセスするための標準化された方法を作り出します。

アーキテクチャはエレガントでシンプルでありながら強力です。

  • MCP ホスト: Claude Desktop のようなプログラムやツールで、AI モデルが操作し、さまざまなサービスと対話します。ホストは AI アシスタントの実行環境とセキュリティ境界を提供します。

  • MCP クライアント: MCP サーバーとの通信を開始し、処理する AI アシスタント内のコンポーネント。各クライアントは特定のタスクを実行したり、特定のリソースにアクセスしたりするための専用の接続を維持し、リクエストとレスポンスのサイクルを管理します。

  • MCP サーバー: 特定のサービスの機能を公開する軽量で専門的なプログラム。各サーバーは、Brave を通じたウェブ検索、GitHub リポジトリへのアクセス、ローカルデータベースのクエリなど、1 つのタイプの統合を処理するために特別に設計されています。オープンソースサーバーもあります。

  • ローカルおよびリモートリソース: MCP サーバーがアクセスできる基礎データソースとサービス。ローカルリソースには、コンピュータ上のファイル、データベース、サービスが含まれ、リモートリソースには、サーバーが安全に接続できる外部 API やクラウドサービスが含まれます。

これは、AI アシスタントに API 駆動の感覚システムを与えるようなものです。トレーニング中にすべてを記憶しようとする代わりに、必要な情報を問い合わせて取得することができます。

なぜこれが重要なのか: 3 つのブレークスルー

  1. リアルタイムインテリジェンス: 古いトレーニングデータに頼るのではなく、AI アシスタントは権威ある情報源から最新の情報を引き出すことができます。ビットコインの価格を尋ねると、昨年の数字ではなく、今日の数字を得ることができます。
  2. システム統合: MCP は開発環境、ビジネスツール、API との直接的な相互作用を可能にします。AI アシスタントはコードについての会話をするだけでなく、実際にリポジトリを見て対話することができます。
  3. 設計によるセキュリティ: クライアント-ホスト-サーバーモデルは明確なセキュリティ境界を作成します。組織は、AI アシスタンスの利点を維持しながら、細かいアクセス制御を実装することができます。セキュリティと能力のどちらかを選ぶ必要はありません。

見ることは信じること: MCP の実際の動作

Claude Desktop App と Brave Search MCP ツールを使用した実用的な例を設定してみましょう。これにより、Claude はリアルタイムでウェブを検索できるようになります。

1. Claude Desktop をインストールする

2. Brave API キーを取得する

3. 設定ファイルを作成する

open ~/Library/Application\ Support/Claude
touch ~/Library/Application\ Support/Claude/claude_desktop_config.json

そして、ファイルを次のように変更します。


{
"mcpServers": {
"brave-search": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-brave-search"
],
"env": {
"BRAVE_API_KEY": "YOUR_API_KEY_HERE"
}
}
}
}

4. Claude Desktop App を再起動する

アプリの右側に、Brave Search MCP ツールを使用したインターネット検索用の 2 つの新しいツールが表示されます(下の画像の赤い円で強調表示されています)。

一度設定されると、変換はシームレスです。Claude にマンチェスター・ユナイテッドの最新の試合について尋ねると、古いトレーニングデータに頼るのではなく、リアルタイムのウェブ検索を行って正確で最新の情報を提供します。

大きな絵: なぜ MCP がすべてを変えるのか

ここでの影響は単純なウェブ検索を超えています。MCP は AI アシスタンスの新しいパラダイムを作り出します。

  1. ツール統合: AI アシスタントは、API を持つ任意のツールを使用できるようになります。Git 操作、データベースクエリ、Slack メッセージなどを考えてみてください。
  2. 現実世界への接地: 現在のデータにアクセスすることで、AI の応答はトレーニングデータではなく現実に基づくものになります。
  3. 拡張性: プロトコルは拡張のために設計されています。新しいツールや API が登場するにつれて、それらは MCP エコシステムに迅速に統合されることができます。

MCP の次のステップ

MCP で可能なことの始まりを見ているだけです。AI アシスタントが次のことを行えることを想像してください。

  • リアルタイムの市場データを取得して分析する
  • 開発環境と直接対話する
  • 会社の内部文書にアクセスして要約する
  • 複数のビジネスツールを調整してワークフローを自動化する

進むべき道

MCP は、AI の能力についての考え方に根本的な変化をもたらします。より大きなモデルを構築し、より大きなコンテキストウィンドウを持つのではなく、既存のシステムやデータと AI がどのように相互作用するかをよりスマートにする方法を作り出しています。

開発者、アナリスト、技術リーダーにとって、MCP は AI 統合の新しい可能性を開きます。それは AI が何を知っているかだけでなく、何ができるかに関するものです。

AI の本当の革命は、モデルを大きくすることではないかもしれません。それは、より接続されたものにすることかもしれません。そして、MCP によって、その革命はすでにここにあります。

DeepSeekのオープンソース革命:クローズドAIサミットからの洞察

· 1 分読了
Lark Birdy
Chief Bird Officer

DeepSeekのオープンソース革命:クローズドAIサミットからの洞察

DeepSeekはAIの世界を席巻しています。DeepSeek-R1についての議論が冷めないうちに、チームはもう一つの爆弾を投下しました:オープンソースのマルチモーダルモデル、Janus-Pro。ペースは目まぐるしく、野心は明確です。

DeepSeekのオープンソース革命:クローズドAIサミットからの洞察

2日前、トップAI研究者、開発者、投資家のグループが、DeepSeekに焦点を当てたクローズドディスカッションに集まりました。3時間以上にわたり、彼らはDeepSeekの技術革新、組織構造、その台頭の広範な影響について詳細に議論しました—AIビジネスモデル、二次市場、AI研究の長期的な軌道について。

DeepSeekのオープンソース透明性の精神に従い、私たちはこの集合的な考えを公開します。ここでは、ディスカッションからの洞察を凝縮し、DeepSeekの戦略、技術的な突破口、そしてAI業界に与える可能性のある影響を探ります。

DeepSeek: 謎と使命

  • DeepSeekの核心使命: CEOの梁文峰はただのAI起業家ではなく、エンジニアです。Sam Altmanとは異なり、彼はビジョンだけでなく技術的な実行に焦点を当てています。
  • DeepSeekが尊敬を得た理由: そのMoE(Mixture of Experts)アーキテクチャが主要な差別化要因です。OpenAIのo1モデルの初期の複製は始まりに過ぎません—本当の挑戦は限られたリソースでのスケーリングです。
  • NVIDIAの承認なしでのスケーリング: 50,000のGPUを持っているという主張にもかかわらず、DeepSeekはおそらく約10,000の古いA100と3,000の禁止前のH800を運用しています。米国のラボとは異なり、DeepSeekは効率を追求せざるを得ません。
  • DeepSeekの真の焦点: OpenAIやAnthropicとは異なり、DeepSeekは「AIが人間に奉仕すること」に固執していません。代わりに、知性そのものを追求しています。これが彼らの秘密の武器かもしれません。

探検者対フォロワー: AIのパワーロー

  • AI開発はステップ関数: 追いつくコストはリードするコストの10倍低いです。「フォロワー」は過去の突破口を計算コストの一部で活用し、「探検者」は盲目的に前進し、大規模なR&D費用を負担しなければなりません。
  • DeepSeekはOpenAIを超えるか? それは可能です—しかしOpenAIがつまずいた場合に限ります。AIはまだオープンエンドの問題であり、DeepSeekの推論モデルへのアプローチは強力な賭けです。

DeepSeekの技術革新

1. 監督付きファインチューニング(SFT)の終焉?

  • DeepSeekの最も破壊的な主張: 推論タスクにはSFTがもはや必要ないかもしれません。もし本当なら、これはパラダイムシフトを意味します。
  • しかし、まだ早い… DeepSeek-R1は依然としてSFTに依存しており、特にアライメントのために。真のシフトは、SFTの使用方法—推論タスクをより効果的に蒸留する方法です。

2. データ効率: 真の堀

  • DeepSeekがデータラベリングを優先する理由: 梁文峰は自らデータをラベル付けしていると言われており、その重要性を強調しています。テスラの自動運転の成功は、綿密な人間の注釈から来ました—DeepSeekは同じ厳密さを適用しています。
  • マルチモーダルデータ: まだ準備ができていない—Janus-Proのリリースにもかかわらず、マルチモーダル学習は依然として非常に高価です。説得力のある成果を示したラボはまだありません。

3. モデル蒸留: 両刃の剣

  • 蒸留は効率を高めるが多様性を下げる: これは長期的にモデルの能力を制限する可能性があります。
  • 蒸留の「隠れた負債」: AIトレーニングの基本的な課題を理解せずに蒸留に依存すると、次世代のアーキテクチャが出現した際に予期しない落とし穴に陥る可能性があります。

4. プロセス報酬: AIアライメントの新たなフロンティア

  • 結果監督が上限を定義する: プロセスベースの強化学習はハッキングを防ぐかもしれませんが、知性の上限は依然として結果駆動のフィードバックに依存しています。
  • RLのパラドックス: 大規模言語モデル(LLM)はチェスのように明確な勝利条件を持っていません。AlphaZeroは勝利が二元的だったために機能しました。AIの推論にはこの明確さが欠けています。

OpenAIがDeepSeekの方法を使用していない理由は?

  • 焦点の問題: OpenAIは効率ではなくスケールを優先しています。
  • 米国での「隠れたAI戦争」: OpenAIとAnthropicはDeepSeekのアプローチを無視してきたかもしれませんが、長くは続かないでしょう。DeepSeekが実行可能であることが証明されれば、研究の方向性が変わることが予想されます。

2025年のAIの未来

  • トランスフォーマーを超えて? AIは異なるアーキテクチャに分岐する可能性があります。分野は依然としてトランスフォーマーに固執していますが、代替モデルが出現する可能性があります。
  • RLの未開拓の可能性: 強化学習は、数学やコーディングのような狭い領域の外ではまだ十分に活用されていません。
  • AIエージェントの年? ハイプにもかかわらず、突破口を開いたAIエージェントを提供したラボはまだありません。

開発者はDeepSeekに移行するか?

  • まだです。 OpenAIの優れたコーディングと指示に従う能力は依然として優位性を持っています。
  • しかし、ギャップは縮まっています。 DeepSeekが勢いを維持すれば、2025年には開発者が移行する可能性があります。

OpenAIのスタゲート5000億ドルの賭け: まだ意味があるか?

  • DeepSeekの台頭はNVIDIAの支配に疑問を投げかける。 効率が力任せのスケーリングを超えるなら、OpenAIの5000億ドルのスーパーコンピュータは過剰に思えるかもしれません。
  • OpenAIは本当に5000億ドルを使うのか? ソフトバンクが財政的支援者ですが、流動性に欠けています。実行は不確実です。
  • MetaはDeepSeekを逆エンジニアリングしている。 これはその重要性を確認していますが、Metaがそのロードマップを適応できるかどうかは不明です。

市場への影響: 勝者と敗者

  • 短期: AIチップ株、特にNVIDIAはボラティリティに直面する可能性があります。
  • 長期: AIの成長ストーリーは健在です—DeepSeekは効率が生の力と同じくらい重要であることを証明しています。

オープンソース対クローズドソース: 新たな戦線

  • オープンソースモデルがクローズドソースの性能の95%に達した場合、 AIビジネスモデル全体が変わります。
  • DeepSeekはOpenAIに手を打たせています。 オープンモデルが改善し続ければ、専有AIは持続不可能になるかもしれません。

DeepSeekのグローバルAI戦略への影響

  • 中国は予想以上に早く追いついている。 中国と米国のAIギャップは、以前考えられていた2年ではなく、わずか3〜9ヶ月かもしれません。
  • DeepSeekは中国のAI戦略の概念実証です。 計算能力の制限にもかかわらず、効率駆動のイノベーションは機能しています。

最後の言葉: ビジョンは技術よりも重要

  • DeepSeekの真の差別化要因はその野心です。 AIの突破口は、既存のモデルを洗練するだけでなく、知性の限界を押し広げることから生まれます。
  • 次の戦いは推論です。 次世代のAI推論モデルを開発する者が業界の軌道を定義します。

思考実験: DeepSeekのCEO梁文峰に質問する機会が一度だけあるとしたら、何を聞きますか?会社がスケールする際の最良のアドバイスは何ですか?考えを共有してください—注目に値する回答は次のクローズドAIサミットへの招待を受けるかもしれません。

DeepSeekはAIの新たな章を開きました。それが物語全体を書き換えるかどうかはまだわかりません。

2025年AI産業分析:勝者、敗者、そして重要な賭け

· 1 分読了
Lark Birdy
Chief Bird Officer

はじめに

AIの風景は大きな変化を遂げています。過去2週間にわたり、主要なAI研究者や開発者との非公開ディスカッションを開催し、2025年の産業の軌跡について興味深い洞察を得ました。浮かび上がったのは、権力の複雑な再編成、既存プレイヤーへの予期せぬ挑戦、そして技術の未来を形作る重要な転換点です。

これは単なるレポートではなく、産業の未来の地図です。2025年を定義する勝者、敗者、そして重要な賭けに飛び込んでみましょう。

2025年AI産業分析:勝者、敗者、そして重要な賭け

勝者:新たな権力構造の出現

Anthropic: 現実的なパイオニア

Anthropicは2025年のリーダーとして際立っており、明確で現実的な戦略により推進されています:

  • モデルコントロールプロトコル(MCP): MCPは単なる技術仕様ではなく、コーディングとエージェントワークフローのための業界標準を作成することを目的とした基盤プロトコルです。エージェント時代のTCP/IPと考えてください—AIの相互運用性の中心にAnthropicを位置づける野心的な動きです。
  • インフラストラクチャの熟練: Anthropicの計算効率カスタムチップ設計への注力は、AI展開のスケーラビリティの課題に対処する先見性を示しています。
  • 戦略的パートナーシップ: 強力なモデルの構築に専念し、補完的な機能をパートナーにアウトソーシングすることで、Anthropicは協力的なエコシステムを育成しています。彼らのClaude 3.5 Sonnetモデルは、AIの世界では永遠ともいえる6か月間、コーディングアプリケーションでトップの座を保持しています。

Google: 垂直統合のチャンピオン

Googleの支配力は、AIバリューチェーン全体に対する比類なきコントロールに由来します:

  • エンドツーエンドのインフラストラクチャ: GoogleのカスタムTPU、広範なデータセンター、シリコン、ソフトウェア、アプリケーション全体の緊密な統合は、競争の余地を与えない競争優位を生み出します。
  • Gemini Exp-1206のパフォーマンス: Gemini Exp-1206の初期試験は新たなベンチマークを設定し、スタック全体で最適化するGoogleの能力を強化しています。
  • エンタープライズソリューション: Googleの豊富な内部エコシステムは、ワークフロー自動化ソリューションのテストグラウンドとして機能します。彼らの垂直統合は、純粋なAI企業や従来のクラウドプロバイダーが匹敵できない方法でエンタープライズAIを支配する位置にあります。

敗者:困難な時代の到来

OpenAI: 岐路に立つ

初期の成功にもかかわらず、OpenAIは増大する課題に直面しています:

  • 組織的な課題: Alec Radfordのような著名な離脱は、内部の不一致を示唆しています。OpenAIの消費者向けアプリケーションへの転換は、AGIへの焦点を失わせているのでしょうか?
  • 戦略的制限: ChatGPTの成功は商業的には価値がありますが、革新を制限している可能性があります。他の競合他社がエージェントワークフローやエンタープライズグレードのアプリケーションを探求する中で、OpenAIはチャットボットの領域に閉じ込められるリスクがあります。

Apple: AIの波を逃す

Appleの限られたAIの進展は、モバイルイノベーションにおける長年の支配を脅かしています:

  • 戦略的盲点: AIがモバイルエコシステムの中心となる中で、AI駆動のエンドツーエンドソリューションへの影響力のある貢献の欠如は、Appleのコアビジネスを弱体化させる可能性があります。
  • 競争上の脆弱性: AIをエコシステムに統合する上での大きな進展がなければ、Appleは急速に革新する競合他社に後れを取るリスクがあります。

2025年の重要な賭け

モデル能力:大きな分岐

AI産業は、2つの潜在的な未来の岐路に立っています:

  1. AGIの飛躍: AGIの突破口は、現在のアプリケーションを時代遅れにし、一夜にして産業を再形成する可能性があります。
  2. 漸進的進化: より可能性が高いのは、漸進的な改善が実用的なアプリケーションとエンドツーエンドの自動化を推進し、使いやすさに焦点を当てた企業を有利にすることです。

企業は、基礎研究を維持しつつ、即時の価値を提供するバランスを取らなければなりません。

エージェントの進化:次のフロンティア

エージェントは、AIと人間の相互作用における変革的なシフトを表しています。

  • コンテキスト管理: 企業は単純なプロンプト応答モデルを超えて、コンテキスト理解をワークフローに組み込んでいます。これによりアーキテクチャが簡素化され、アプリケーションがモデル能力と共に進化することが可能になります。
  • 人間とAIの協力: 自律性と監督のバランスが鍵です。AnthropicのMCPのような革新は、エージェントと企業システム間のシームレスなコミュニケーションを可能にするエージェントアプリストアの基盤を築く可能性があります。

未来を見据えて:次のメガプラットフォーム

AIオペレーティングシステム時代

AIはプラットフォームのパラダイムを再定義し、デジタル時代の新しい「オペレーティングシステム」を創造する準備が整っています:

  • 基盤モデルとしてのインフラストラクチャ: モデルはそれ自体がプラットフォームとなり、APIファーストの開発標準化されたエージェントプロトコルが革新を推進します。
  • 新しいインタラクションのパラダイム: AIは従来のインターフェースを超え、デバイスや環境にシームレスに統合されます。ロボティクスとウェアラブルAIエージェントの時代が近づいています。
  • ハードウェアの進化: 専門化されたチップ、エッジコンピューティング、最適化されたハードウェアフォームファクターが、産業全体でのAIの採用を加速させます。

結論

AI産業は、実用的なアプリケーション、インフラストラクチャ、人間との相互作用が中心となる決定的な段階に入っています。勝者は次の点で優れています:

  • 実際の問題を解決するエンドツーエンドソリューションを提供する。
  • 競合他社を凌駕するために垂直アプリケーションに特化する。
  • 効率的な展開のための強力でスケーラブルなインフラストラクチャを構築する。
  • 自律性と監督のバランスを取る人間とAIの相互作用のパラダイムを定義する。

これは重要な瞬間です。成功する企業は、AIの可能性を具体的で変革的な価値に変換する企業です。2025年が展開するにつれ、次のメガプラットフォームとエコシステムを定義する競争がすでに始まっています。

あなたはどう思いますか?AGIの突破口に向かっているのか、それとも漸進的な進歩が支配するのか?あなたの考えを共有し、会話に参加してください。

エアドロップ Cuckoo × IoTeX: Cuckoo チェーンが IoTeX にレイヤー 2 として拡大

· 1 分読了
Lark Birdy
Chief Bird Officer

Cuckoo Network は、分散型 AI インフラストラクチャを IoTeX の活気あるエコシステムに導入するレイヤー 2 ソリューションとしての拡大を発表できることを嬉しく思います。この戦略的パートナーシップは、Cuckoo の AI モデル提供の専門知識と IoTeX の強力な MachineFi インフラストラクチャを組み合わせ、両コミュニティに新しい機会を創出します。

Cuckoo Network Expansion

ニーズ

IoTeX ユーザーと開発者は効率的な分散型 AI 計算リソースへのアクセスを必要としており、AI アプリケーションの開発者はスケーラブルなブロックチェーンインフラストラクチャを必要としています。IoTeX 上に構築することで、Cuckoo チェーンはこれらのニーズに応え、新しいエコシステムに分散型 AI マーケットプレイスを拡大します。

ソリューション

IoTeX 上の Cuckoo チェーンは以下を提供します:

  • IoTeX の MachineFi インフラストラクチャとのシームレスな統合
  • AI モデル提供のための低い取引コスト
  • 分散型 AI アプリケーションのスケーラビリティの向上
  • IoTeX と Cuckoo チェーン間のクロスチェーン相互運用性

エアドロップの詳細

この拡大を祝して、Cuckoo Network は IoTeX と Cuckoo コミュニティメンバーのためのエアドロップキャンペーンを開始します。参加者は様々なエンゲージメント活動を通じて $CAI トークンを獲得できます:

  1. IoTeX エコシステムの早期採用者
  2. ネットワークに貢献する GPU マイナー
  3. クロスチェーン活動への積極的な参加
  4. コミュニティエンゲージメントと開発への貢献

リーダーシップからのコメント

「IoTeX 上にレイヤー 2 として Cuckoo チェーンを構築することは、AI インフラストラクチャを分散化するという我々の使命における重要なマイルストーンです」と Cuckoo Network の CPO である Dora Noda は述べています。「このコラボレーションにより、IoTeX の革新的な MachineFi エコシステムに効率的でアクセスしやすい AI 計算を提供し、分散型 AI マーケットプレイスを拡大することができます。」

よくある質問

Q: IoTeX 上の Cuckoo チェーンの L2 のユニークな点は何ですか?

A: IoTeX 上の Cuckoo チェーンの L2 は、分散型 AI モデル提供と IoTeX の MachineFi インフラストラクチャを組み合わせ、IoT デバイスとアプリケーションのための効率的でコスト効果の高い AI 計算を可能にします。

Q: エアドロップに参加するにはどうすればいいですか?

A: https://cuckoo.network/portal/airdrop?referer=CuckooNetworkHQ を訪問し、資格を満たすアクションを完了して報酬を獲得してください。

Q: どうすればもっと $CAI を獲得できますか?

  • $CAI トークンのステーキング
  • GPU マイナーノードの運用
  • クロスチェーン取引への参加
  • コミュニティ開発への貢献

Q: GPU マイナーの技術要件は何ですか?

A: GPU マイナーには以下が必要です:

  • NVIDIA GTX 3080、L4 以上
  • 最低 8GB RAM
  • トップ 10 のマイナーに選ばれるための $CAI のステークと投票
  • 信頼性のあるインターネット接続 詳細なセットアップ手順については、cuckoo.network/docs をご覧ください

Q: IoTeX ユーザーにとっての利点は何ですか?

A: IoTeX ユーザーは以下にアクセスできます:

  • 分散型 AI 計算リソース
  • AI サービスのための低い取引コスト
  • 既存の MachineFi アプリケーションとの統合
  • GPU マイニングとステーキングによる新しい収益機会

Q: クロスチェーン機能はどのように機能しますか?

A: ユーザーは、IoTeX、Arbitrum、および Cuckoo チェーン間で資産をシームレスに移動でき、エコシステム間で統一された流動性と相互運用性を実現します。Arbitrum ブリッジは開始されており、IoTeX ブリッジはまだ進行中です。

Q: ローンチのタイムラインはどうなっていますか?

A: タイムライン:

  • 1月8日の週:Cuckoo チェーンメインネットでのエアドロップ配布開始
  • 1月29日の週:IoTeX と Cuckoo チェーン間のブリッジ展開
  • 2月12日の週:自律エージェントローンチパッドの完全なローンチ

Q: 開発者は Cuckoo チェーンの IoTeX L2 上でどのように構築できますか?

A: Cuckoo チェーンは完全な EVM 互換性を維持しているため、開発者は慣れ親しんだ Ethereum ツールと言語を使用できます。包括的なドキュメントと開発者リソースは cuckoo.network/docs で利用可能です。

Q: エアドロップの総配分はどのくらいですか?

A: 「IoTeX x Cuckoo」エアドロップキャンペーンは、総供給量 10 億 $CAI トークンのうち、早期採用者とコミュニティメンバーのために予約された総配分の 1‰ を配布します。

連絡先情報

詳細情報については、コミュニティに参加してください:

Ritual: ブロックチェーンに思考をもたらすための2,500万ドルの賭け

· 1 分読了
Lark Birdy
Chief Bird Officer

Ritualは、元Polychain投資家のNiraj PantとAkilesh Pottiによって2023年に設立され、ブロックチェーンとAIの交差点にある野心的なプロジェクトです。Archetypeが主導し、Polychain Capitalからの戦略的投資を受けた2,500万ドルのシリーズAに支えられ、同社はオンチェーンおよびオフチェーンの複雑な相互作用を可能にするための重要なインフラのギャップに対処することを目指しています。主要な機関や企業からの30人の専門家チームと共に、RitualはAI機能を直接ブロックチェーン環境に統合するプロトコルを構築しており、自然言語生成スマートコントラクトや動的市場駆動型貸付プロトコルなどのユースケースを対象としています。

Ritual: ブロックチェーンに思考をもたらすための2,500万ドルの賭け

なぜ顧客はAIのためにWeb3を必要とするのか

Web3とAIの統合は、従来の集中型AIシステムで見られる多くの制限を軽減できます。

  1. 分散型インフラは操作のリスクを軽減するのに役立ちます: AI計算とモデルの出力が複数の独立したノードによって実行される場合、開発者や企業の仲介者を含む単一のエンティティが結果を改ざんすることがはるかに困難になります。これにより、AI駆動のアプリケーションにおけるユーザーの信頼と透明性が向上します。

  2. Web3ネイティブのAIはオンチェーンのスマートコントラクトの範囲を基本的な金融ロジックを超えて拡大します。AIが関与することで、契約はリアルタイムの市場データ、ユーザー生成のプロンプト、さらには複雑な推論タスクに応答できるようになります。これにより、アルゴリズム取引、自動貸付決定、チャット内インタラクション(例:FrenRug)など、既存の孤立したAI APIでは不可能なユースケースが可能になります。AIの出力が検証可能でオンチェーン資産と統合されているため、これらの高価値または高リスクの決定は、より大きな信頼と少ない仲介者で実行できます。

  3. AIの作業負荷をネットワーク全体に分散することで、コストを削減しスケーラビリティを向上させる可能性があります。AI計算は高価になることがありますが、よく設計されたWeb3環境は単一の集中プロバイダーではなく、グローバルな計算リソースのプールから引き出します。これにより、より柔軟な価格設定、信頼性の向上、継続的なオンチェーンAIワークフローの可能性が開かれ、ノードオペレーターが計算能力を提供するための共有インセンティブによって支えられます。

Ritualのアプローチ

システムは、Infernet OracleRitual Chain(インフラとプロトコル)、およびネイティブアプリケーションの3つの主要なレイヤーで構成されており、それぞれがWeb3 x AI領域の異なる課題に対処するように設計されています。

1. Infernet Oracle

  • その機能 InfernetはRitualの最初の製品であり、オンチェーンのスマートコントラクトとオフチェーンのAI計算をつなぐ橋渡しをします。外部データを取得するだけでなく、AIモデルの推論タスクを調整し、結果を収集し、検証可能な方法でオンチェーンに返します。
  • 主要コンポーネント
    • コンテナ: 任意のAI/MLワークロードをホストするための安全な環境(例:ONNX、Torch、Hugging Faceモデル、GPT-4)。
    • infernet-ml: AI/MLワークフローをデプロイするための最適化されたライブラリで、人気のあるモデルフレームワークとの統合を提供します。
    • Infernet SDK: 開発者がAI推論結果を要求し消費するスマートコントラクトを簡単に作成できる標準化されたインターフェースを提供します。
    • Infernetノード: GCPやAWSなどのサービスにデプロイされ、オンチェーンの推論要求をリッスンし、コンテナ内でタスクを実行し、結果をオンチェーンに返します。
    • 支払いと検証: 計算ノードと検証ノード間の料金分配を管理し、タスクが誠実に実行されることを保証するためのさまざまな検証方法をサポートします。
  • その重要性 Infernetは、オフチェーンのAI計算を検証することで、従来のオラクルを超えています。データフィードだけでなく、AI駆動のタスクをオンチェーンアプリケーションにリンクする複雑さを軽減するために、繰り返しまたは時間に敏感な推論ジョブのスケジューリングもサポートします。

2. Ritual Chain

Ritual Chainは、インフラストラクチャとプロトコルの両方のレイヤーでAIに優しい機能を統合しています。頻繁で自動化された複雑なスマートコントラクトとオフチェーン計算の間の相互作用を処理するように設計されており、通常のL1が管理できる範囲をはるかに超えています。

2.1 インフラストラクチャレイヤー

  • その機能 Ritual Chainのインフラストラクチャは、標準的なブロックチェーンよりも複雑なAIワークフローをサポートします。事前コンパイルされたモジュール、スケジューラ、およびEVM拡張であるEVM++を通じて、頻繁またはストリーミングAIタスク、堅牢なアカウント抽象化、および自動化された契約インタラクションを容易にすることを目指しています。

  • 主要コンポーネント

    • 事前コンパイルされたモジュール

      :

      • **EIP拡張(例:EIP-665、EIP-5027)**はコード長の制限を取り除き、署名のガスを削減し、チェーンとオフチェーンのAIタスク間の信頼を可能にします。
      • 計算事前コンパイルは、スマートコントラクト内でAI推論、ゼロ知識証明、モデルの微調整のためのフレームワークを標準化します。
    • スケジューラ: 外部の「キーパー」契約に依存せずに、タスクを固定スケジュールで実行できるようにします(例:10分ごと)。継続的なAI駆動の活動に不可欠です。

    • EVM++: ネイティブアカウント抽象化(EIP-7702)を備えたEVMを強化し、契約が一定期間トランザクションを自動承認できるようにします。これにより、AI駆動の意思決定(例:自動取引)が人間の介入なしにサポートされます。

  • その重要性 AIに焦点を当てた機能をインフラストラクチャに直接組み込むことで、Ritual Chainは複雑で反復的または時間に敏感なAI計算を合理化します。開発者は、真に「インテリジェント」なdAppを構築するためのより堅牢で自動化された環境を得ることができます。

2.2 コンセンサスプロトコルレイヤー

  • その機能 Ritual Chainのプロトコルレイヤーは、多様なAIタスクを効率的に管理する必要性に対処します。大規模な推論ジョブと異種計算ノードは、スムーズな実行と検証を保証するために特別な料金市場ロジックと新しいコンセンサスアプローチを必要とします。
  • 主要コンポーネント
    • Resonance(料金市場):
      • AIタスクの複雑さに応じて適切な計算ノードとマッチングするために「オークショニア」と「ブローカー」の役割を導入します。
      • ネットワークスループットを最大化するために、強力なノードが複雑なタスクを処理することを保証する「バンドル」タスク割り当てを採用します。
    • Symphony(コンセンサス):
      • AI計算を並列サブタスクに分割して検証します。複数のノードがプロセスステップと出力を個別に検証します。
      • 大規模なAIタスクがネットワークを過負荷にしないように、検証作業を複数のノードに分散します。
    • vTune:
      • 「バックドア」データチェックを使用して、ノードが行ったモデルの微調整をオンチェーンで検証する方法を示します。
      • Ritual Chainが、最小限の信頼仮定でより長く複雑なAIタスクを処理する能力を示します。
  • その重要性 従来の料金市場とコンセンサスモデルは、重いまたは多様なAIワークロードに苦労します。両方を再設計することで、Ritual Chainはタスクを動的に割り当て、結果を検証し、基本的なトークンまたは契約ロジックをはるかに超えたオンチェーンの可能性を拡大します。

3. ネイティブアプリケーション

  • その機能 InfernetとRitual Chainを基に構築されたネイティブアプリケーションには、モデルマーケットプレイスと検証ネットワークが含まれており、AI駆動の機能がどのようにネイティブに統合され、オンチェーンで収益化されるかを示しています。
  • 主要コンポーネント
    • モデルマーケットプレイス:
      • AIモデル(およびおそらく微調整されたバリアント)をオンチェーン資産としてトークン化します。
      • 開発者がAIモデルを購入、販売、またはライセンスできるようにし、収益をモデルクリエイターと計算/データプロバイダーに報酬として分配します。
    • 検証ネットワークと「Rollup-as-a-Service」:
      • 外部プロトコル(例:L2)にゼロ知識証明やAI駆動のクエリのような複雑なタスクを計算し検証するための信頼できる環境を提供します。
      • RitualのEVM++、スケジューリング機能、および料金市場設計を活用したカスタマイズされたロールアップソリューションを提供します。
  • その重要性 AIモデルを直接オンチェーンで取引可能かつ検証可能にすることで、Ritualはブロックチェーンの機能をAIサービスとデータセットのマーケットプレイスに拡張します。より広範なネットワークもRitualのインフラを専門的な計算に利用でき、AIタスクと証明がより安価で透明性のある統一されたエコシステムを形成します。

Ritualのエコシステム開発

Ritualの「オープンAIインフラストラクチャネットワーク」のビジョンは、強力なエコシステムを構築することと密接に関連しています。コア製品設計を超えて、チームはモデルストレージ、計算、証明システム、AIアプリケーション全体でパートナーシップを築き、ネットワークの各レイヤーが専門家のサポートを受けられるようにしています。同時に、Ritualは開発者リソースとコミュニティの成長に多大な投資を行い、Ritual Chain上での実際のユースケースを促進しています。

  1. エコシステムのコラボレーション
  • モデルストレージと整合性: Arweaveを使用してAIモデルを保存し、改ざんされないようにします。
  • 計算パートナーシップ: IO.netはRitualのスケーリングニーズに一致する分散計算を提供します。
  • 証明システムとレイヤー2: StarkwareとArbitrumとのコラボレーションにより、EVMベースのタスクのための証明生成能力を拡張します。
  • AI消費者アプリ: MyshellとStory Protocolとのパートナーシップにより、より多くのAI駆動サービスをオンチェーンに導入します。
  • モデル資産レイヤー: Pond、Allora、0xScopeが追加のAIリソースを提供し、オンチェーンAIの限界を押し広げます。
  • プライバシー強化: NillionがRitual Chainのプライバシーレイヤーを強化します。
  • セキュリティとステーキング: EigenLayerがネットワークのセキュリティとステーキングを支援します。
  • データ可用性: EigenLayerとCelestiaモジュールがAIワークロードに不可欠なデータ可用性を向上させます。
  1. アプリケーションの拡大
  • 開発者リソース: AIコンテナの起動、PyTorchの実行、GPT-4やMistral-7Bのオンチェーンタスクへの統合方法を詳細に説明した包括的なガイド。Infernetを介したNFT生成のような実践的な例が新規参入者の障壁を下げます。
  • 資金提供と加速: Ritual AltarアクセラレータとRitual RealmプロジェクトがRitual Chain上でdAppを構築するチームに資本とメンターシップを提供します。
  • 注目のプロジェクト:
    • Anima: 貸付、スワップ、利回り戦略に関する自然言語リクエストを処理するマルチエージェントDeFiアシスタント。
    • Opus: スケジュールされた取引フローを持つAI生成のミームトークン。
    • Relic: 柔軟で効率的なオンチェーントレーディングを目指して、AMMにAI駆動の予測モデルを組み込みます。
    • Tithe: MLを活用して貸付プロトコルを動的に調整し、リスクを低減しながら利回りを向上させます。

製品設計、パートナーシップ、多様なAI駆動のdAppを整合させることで、RitualはWeb3 x AIの多面的なハブとしての地位を確立しています。開発者サポートと実際の資金提供機会を伴うエコシステム第一のアプローチは、オンチェーンでのAIの採用を広げるための基盤を築いています。

Ritualの展望

Ritualの製品計画とエコシステムは有望ですが、多くの技術的なギャップが残っています。開発者はまだモデル推論エンドポイントの設定、AIタスクの高速化、大規模計算のための複数ノードの調整などの基本的な問題を解決する必要があります。現時点では、コアアーキテクチャはより単純なユースケースを処理できますが、真の挑戦は、より創造的なAI駆動のアプリケーションをオンチェーンで構築するように開発者を鼓舞することです。

将来的には、Ritualは金融に重点を置かず、計算またはモデル資産を取引可能にすることに焦点を当てるかもしれません。これにより、参加者を引き付け、チェーンのトークンを実際のAIワークロードに結びつけることでネットワークのセキュリティを強化することができます。トークン設計の詳細はまだ不明ですが、Ritualのビジョンは、複雑で分散型のAI駆動アプリケーションの新しい世代を刺激し、Web3をより深く、より創造的な領域に押し進めることです。

カッコウネットワークとスワンチェーンが協力して分散型AIを革新

· 1 分読了
Lark Birdy
Chief Bird Officer

カッコウネットワークとスワンチェーン、分散型AIとブロックチェーン技術の世界で先駆的な2つの力が、新たなエキサイティングなパートナーシップを発表できることを嬉しく思います。このコラボレーションは、先進的なAI機能へのアクセスを民主化し、より効率的でアクセスしやすく、革新的なAIエコシステムを創造するという私たちの使命において重要な一歩を示します。

カッコウネットワークとスワンチェーンが協力して分散型AIを革新

拡張されたGPUリソースで分散型AIを強化

このパートナーシップの中心には、スワンチェーンの広範なGPUリソースをカッコウネットワークプラットフォームに統合することがあります。スワンチェーンのグローバルなデータセンターとコンピューティングプロバイダーのネットワークを活用することで、カッコウネットワークは分散型大規模言語モデル(LLMs)を提供する能力を大幅に拡大します。

この統合は、両社のビジョンと完全に一致しています:

  • カッコウネットワークの目標は、分散型AIモデル提供マーケットプレイスを作成すること
  • スワンチェーンの使命は、包括的なブロックチェーンインフラストラクチャを通じてAIの採用を加速すること

img

AIで愛されるアニメキャラクターを実現

このパートナーシップの力を示すために、愛されるアニメの主人公にインスパイアされたキャラクターベースのLLMsの初期リリースを発表できることを嬉しく思います。これらのモデルは、才能あるカッコウクリエイターコミュニティによって作成され、スワンチェーンのGPUリソースで実行されます。

img

ファンや開発者はこれらのキャラクターモデルと対話し、それに基づいて構築することができ、クリエイティブなストーリーテリング、ゲーム開発、インタラクティブな体験の新しい可能性を開きます。

相互利益と共有ビジョン

このパートナーシップは、両プラットフォームの強みを結集します:

  • カッコウネットワーク は、AIタスクを効率的に配布および管理するための分散型マーケットプレイスとAIの専門知識を提供します。
  • スワンチェーン は、その強力なGPUインフラストラクチャ、革新的なZKマーケット、公正な報酬へのコミットメントを提供します。

共に、AIの能力がよりアクセスしやすく、効率的で、公平になる未来に向けて取り組んでいます。

私たちのコミュニティへの影響

カッコウネットワークコミュニティにとって:

  • より広範なGPUリソースへのアクセスが可能になり、より高速な処理とより複雑なAIモデルが可能に
  • 独自のAIモデルを作成し収益化する機会の拡大
  • スワンチェーンの効率的なインフラストラクチャのおかげでコスト削減の可能性

スワンチェーンコミュニティにとって:

  • カッコウネットワークのマーケットプレイスを通じてGPUリソースを収益化する新しい道
  • 最先端のAIアプリケーションと活気あるクリエイターコミュニティへの露出
  • スワンチェーンのインフラストラクチャの需要と利用の増加の可能性

今後の展望

このパートナーシップは始まりに過ぎません。今後、私たちは技術を統合し、両方のエコシステムに価値を創造するための追加の方法を探求していきます。特に、スワンチェーンのZKマーケットとユニバーサル・ベーシック・インカムモデルを活用して、GPUプロバイダーとAI開発者にさらに多くの機会を創出する可能性に興奮しています。

このエキサイティングな旅を共に歩む中で、さらなる更新情報をお待ちください。分散型AIの未来は明るく、スワンチェーンのようなパートナーと共に、その未来を現実にする一歩を踏み出しています。

このパートナーシップを祝うために、両コミュニティが参加することを招待します。共に、私たちは単に技術を構築するだけでなく、AIの未来を形作り、世界中のクリエイターを力づけています。

カッコウネットワーク

スワンチェーンについてもっと知る

Cuckoo Chatでアニメの世界に飛び込もう:AIとWeb3によって実現

· 1 分読了
Lark Birdy
Chief Bird Officer

Cuckoo Networkでは、Cuckoo Chatを紹介できることを嬉しく思います。これは、AI、Web3、アニメファンダムの革新的な融合です。ナルトに忍者の技について話したり、夜神月に正義感について尋ねたりすることを想像してみてください。今、それが可能です—Cuckoo Networkポータルから直接。

Cuckoo Chatでアニメの世界に飛び込もう:AIとWeb3によって実現

Cuckoo Chatでは、Llamaに基づいた高度な会話型AIを通じて、17人の最も愛されるアニメキャラクターを生き生きと再現しました。カジュアルな視聴者でも、熱心なアニメファンでも、Cuckoo Chatはあなたのお気に入りのキャラクターとリアルタイムで会話できる、没入感のあるユニークな体験を提供します。

Cuckoo Chatが特別な理由

Cuckoo Chatは、ただのチャットボットではありません。これは、Cuckoo NetworkのAIを分散化するという広範なビジョンの一部であり、あなたのインタラクションが安全でスケーラブルなWeb3インフラによって支えられています。各キャラクターの応答は、私たちの分散型AIノードを通じて処理されるため、より迅速でプライベート、信頼性の高いインタラクションが実現します。さらに、Cuckoo Chatを使用することで報酬を得ることもできます。これは、私たちのユニークなインセンティブGPUネットワークのおかげです!

キャラクターに会おう:チャット形式であなたのお気に入りの個性

私たちの最初のリリースでは、アニメとポップカルチャーからの17人のアイコニックなキャラクターをフィーチャーしています。これらは、私たちのクリエイターコミュニティによって作成され、彼らの本物の個性、バックストーリー、特徴を反映するように慎重に作られています。チャットする準備をしましょう:

Cuckoo Chat

そして、モンキー・D・ルフィツナデスポンジ・ボブ(そう、スポンジ・ボブもここにいます!)など、さらに多くのキャラクターがいます。各会話は、他では味わえない没入型のキャラクター主導の体験を提供します。

どうやって機能するの?簡単です!

  1. 訪問cuckoo.network/portal/chatにアクセスします。
  2. 選択: リストからお気に入りのアニメキャラクターを選びます。
  3. チャット: 会話を始めます!各チャットは、選んだキャラクターと直接話しているかのように感じられます。

各チャットセッションでは、分散型AIと対話しているため、あなたの会話はCuckoo Networkの分散型GPUマイナーを通じて安全に処理されます。各インタラクションはプライベートで迅速、ネットワーク全体に分散されています。

Cuckoo Chatを構築した理由:アニメファンのために、Web3の革新者によって

Cuckoo Networkでは、AIとWeb3の限界を押し広げることに情熱を注いでいます。Cuckoo Chatでは、単なる楽しい体験を超えて、AIを分散化し、ユーザーにデータとインタラクションに対するより多くのコントロールを提供するという私たちの使命に沿ったプラットフォームを構築しました。Web3の世界が進化する中で、Cuckoo Chatはファンダムと最先端技術の間の革新的な架け橋として機能します。

私たちはここで止まりません。Cuckoo Chatは、より多くのキャラクター、より深いインタラクションモデル、新機能をユーザーのフィードバックと参加によって拡大し続けます。今後の更新にご期待ください、そして分散型AIの未来の一部になりましょう!

次は何?

私たちはCuckoo Chatの宇宙を常に拡大しています!すぐに、各会話に関連するNFTベースのコレクションを導入し、ユーザーがアニメキャラクターとのチャットからユニークな瞬間をミントできるようにします。さらに、世界中のファンのために会話を強化する多言語サポートの展開にも取り組んでいます。

参加しよう!

あなたの声が重要です。Cuckoo Chatを使用した後、Discord𝕏/Twitterで体験を共有してください。あなたのフィードバックは、この機能の未来を直接形作ります。チャットしたいキャラクターがいる?教えてください—私たちはあなたの提案に基づいてCuckoo Chatのキャラクターリストを拡大することを常に探求しています。


今すぐ Cuckoo Chatでお気に入りのアニメキャラクターとチャットを始めましょう。それは単なる会話ではなく、アニメファンダムの中心への分散型冒険です!


Cuckoo Chatを愛する理由:

  • 本物のAI駆動のアニメキャラクターとの没入型会話
  • Web3によるプライバシーと分散型インフラ
  • お気に入りのチャットに関連する報酬と将来のNFT

Cuckoo Chatとのこのエキサイティングな新しい旅に参加してください—アニメファンダムがWeb3の未来と出会う場所です。