การทำลายอุปสรรคบริบทของ AI: ทำความเข้าใจโปรโตคอลบริบทของโมเดล
เรามักพูดถึงโมเดลที่ใหญ่ขึ้น หน้าต่างบริบทที่กว้างขึ้น และพารามิเตอร์ที่มากขึ้น แต่การบุกเบิกที่แท้จริงอาจไม่เกี่ยวกับขนาดเลย โปรโตคอลบริบทของโมเดล (MCP) แสดงถึงการเปลี่ยนแปลงแนวคิดในวิธีที่ผู้ช่วย AI โต้ตอบกับโลกภายนอก และมันกำลังเกิดขึ้นในขณะนี้
ปัญหาที่แท้จริงกับผู้ช่วย AI
นี่คือสถานการณ์ที่นักพัฒนาทุกคนรู้จัก: คุณกำลังใช้ผู้ช่วย AI เพื่อช่วยแก้ไขข้อบกพร่องของโค้ด แต่ไม่สามารถเห็นที่เก็บของคุณได้ หรือคุณถามเกี่ยวกับข้อมูลตลาด แต่ความรู้ของมันล้าสมัยไปหลายเดือน ข้อจำกัดพื้นฐานไม่ใช่ความฉลาดของ AI—แต่เป็นความไม่สามารถเข้าถึงโลกจริงได้
โมเดลภาษาขนาดใหญ่ (LLMs) เป็นเหมือนนักวิชาการที่ยอดเยี่ยมที่ถูกขังอยู่ในห้องพร้อมกับข้อมูลการฝึกอบรมเท่านั้น ไม่ว่าพวกเขาจะฉลาดแค่ไหน พวกเขาก็ไม่สามารถตรวจสอบราคาหุ้นปัจจุบัน ดูฐานโค้ดของคุณ หรือโต้ตอบกับเครื่องมือของคุณได้ จนถึงตอนนี้
การเข้าสู่โปรโตคอลบริบทของโมเดล (MCP)
MCP จินตนาการใหม่อย่างพื้นฐานว่าผู้ช่วย AI โต้ตอบกับระบบภายนอกอย่างไร แทนที่จะพยายามยัดเยียดบริบทเพิ่มเติมเข้าไปในโมเดลพารามิเตอร์ที่ใหญ่ขึ้น MCP สร้างวิธีมาตรฐานให้ AI เข้าถึงข้อมูลและระบบแบบไดนามิกตามความต้องการ
สถาปัตยกรรมนี้มีความเรียบง่ายแต่ทรงพลัง:
-
MCP Hosts: โปรแกรมหรือเครื่องมือเช่น Claude Desktop ที่โมเดล AI ทำงานและโต้ตอบกับบริการต่างๆ โฮสต์ให้สภาพแวดล้อมการทำงานและขอบเขตความปลอดภัยสำหรับผู้ช่วย AI
-
MCP Clients: ส่วนประกอบภายในผู้ช่วย AI ที่เริ่มต้นคำขอและจัดการการสื่อสารกับเซิร์ฟเวอร์ MCP แต่ละไคลเอนต์รักษาการเชื่อมต ่อเฉพาะเพื่อทำงานเฉพาะหรือเข้าถึงทรัพยากรเฉพาะ จัดการวงจรคำขอ-ตอบกลับ
-
MCP Servers: โปรแกรมเฉพาะที่มีน้ำหนักเบาที่เปิดเผยความสามารถของบริการเฉพาะ เซิร์ฟเวอร์แต่ละตัวถูกสร้างขึ้นเพื่อจัดการการรวมประเภทหนึ่ง ไม่ว่าจะเป็นการค้นหาเว็บผ่าน Brave การเข้าถึงที่เก็บ GitHub หรือการสอบถามฐานข้อมูลในเครื่อง มี เซิร์ฟเวอร์โอเพนซอร์ส
-
ทรัพยากรในเครื่องและระยะไกล: แหล่งข้อมูลและบริการพื้นฐานที่เซิร์ฟเวอร์ MCP สามารถเข้าถึงได้ ทรัพยากรในเครื่องรวมถึงไฟล์ ฐานข้อมูล และบริการบนคอมพิวเตอร์ของคุณ ในขณะที่ทรัพยากรระยะไกลครอบคลุม API ภายนอกและบริการคลาวด์ที่เซิร์ฟเวอร์สามารถเชื่อมต่อได้อย่างปลอดภัย

คิดว่ามันเป็นการให้ผู้ช่วย AI มีระบบประสาทสัมผัสที่ขับเคลื่อนด้วย API แทนที่จะพยายามจดจำทุกอย่างระหว่างการฝึกอบรม พวกเขาสามารถเข้าถึงและสอบถามสิ่งที่ต้องการรู้ได้
ทำไมสิ่งนี้ถึงสำคัญ: สามการบุกเบิก
- ปัญญาแบบเรียลไทม์: แทนที่จะพึ่งพาข้อมูลการฝึกอบรมที่ล้าสมัย ผู้ช่วย AI สามารถดึงข้อมูลปัจจุบันจากแหล่งที่เชื่อถือได้ เมื่อคุณถามเกี่ยวกับราคาของ Bitcoin คุณจะได้ราคาของวันนี้ ไม่ใช่ของปีที่แล้ว
- การรวมระบบ: MCP ช่วยให้การโต้ตอบโดยตรงกับสภาพแวดล้อมการพัฒนา เครื่องมือธุรกิจ และ API ผู้ช่วย AI ของคุณไม่ได้แค่พูดคุยเกี่ยวกับโค้ด—มันส ามารถเห็นและโต้ตอบกับที่เก็บของคุณได้จริง
- ความปลอดภัยโดยการออกแบบ: โมเดลไคลเอนต์-โฮสต์-เซิร์ฟเวอร์สร้างขอบเขตความปลอดภัยที่ชัดเจน องค์กรสามารถใช้การควบคุมการเข้าถึงที่ละเอียดในขณะที่รักษาประโยชน์ของการช่วยเหลือ AI ไม่มีการเลือกอีกต่อไประหว่างความปลอดภัยและความสามารถ
เห็นคือเชื่อ: MCP ในการปฏิบัติ
ลองตั้งค่าตัวอย่างการใช้งานจริงโดยใช้แอป Claude Desktop และเครื่องมือ Brave Search MCP สิ่งนี้จะช่วยให้ Claude ค้นหาเว็บแบบเรียลไทม์: