Перейти к основному содержимому

5 постов помечено как "децентрализованные вычисления"

Просмотреть все теги

Преодоление барьера контекста ИИ: Понимание Протокола Контекста Модели

· 5 минут чтения
Lark Birdy
Chief Bird Officer

Мы часто говорим о более крупных моделях, больших окнах контекста и большем количестве параметров. Но настоящий прорыв может быть вовсе не в размере. Протокол Контекста Модели (MCP) представляет собой сдвиг парадигмы в том, как ИИ ассистенты взаимодействуют с окружающим миром, и это происходит прямо сейчас.

Архитектура MCP

Реальная проблема с ИИ ассистентами

Вот сценарий, знакомый каждому разработчику: вы используете ИИ ассистента для отладки кода, но он не может видеть ваш репозиторий. Или вы спрашиваете его о рыночных данных, но его знания устарели на несколько месяцев. Основное ограничение — это не интеллект ИИ, а его неспособность получить доступ к реальному миру.

Большие языковые модели (LLM) были как блестящие ученые, запертые в комнате только с их обучающими данными. Независимо от того, насколько они умны, они не могут проверить текущие цены на акции, посмотреть ваш код или взаимодействовать с вашими инструментами. До сих пор.

Встречайте Протокол Контекста Модели (MCP)

MCP фундаментально переосмысливает, как ИИ ассистенты взаимодействуют с внешними системами. Вместо того чтобы пытаться втиснуть больше контекста в все более крупные модели параметров, MCP создает стандартизированный способ для ИИ динамически получать доступ к информации и системам по мере необходимости.

Архитектура элегантно проста, но мощна:

  • Хосты MCP: Программы или инструменты, такие как Claude Desktop, где ИИ модели работают и взаимодействуют с различными сервисами. Хост предоставляет среду выполнения и границы безопасности для ИИ ассистента.

  • Клиенты MCP: Компоненты в ИИ ассистенте, которые инициируют запросы и обрабатывают коммуникацию с серверами MCP. Каждый клиент поддерживает выделенное соединение для выполнения конкретных задач или доступа к определенным ресурсам, управляя циклом запрос-ответ.

  • Серверы MCP: Легковесные специализированные программы, которые раскрывают возможности конкретных сервисов. Каждый сервер специально разработан для обработки одного типа интеграции, будь то поиск в интернете через Brave, доступ к репозиториям GitHub или запросы к локальным базам данных. Существуют серверы с открытым исходным кодом.

  • Локальные и удаленные ресурсы: Основные источники данных и сервисы, к которым серверы MCP могут получить доступ. Локальные ресурсы включают файлы, базы данных и сервисы на вашем компьютере, в то время как удаленные ресурсы охватывают внешние API и облачные сервисы, к которым серверы могут безопасно подключаться.

Представьте, что это как дать ИИ ассистентам сенсорную систему, управляемую API. Вместо того чтобы пытаться запомнить все во время обучения, они теперь могут обращаться и запрашивать то, что им нужно знать.

Почему это важно: Три прорыва

  1. Интеллект в реальном времени: Вместо того чтобы полагаться на устаревшие обучающие данные, ИИ ассистенты теперь могут получать актуальную информацию из авторитетных источников. Когда вы спрашиваете о цене биткойна, вы получаете сегодняшнее число, а не прошлогоднее.
  2. Интеграция систем: MCP позволяет прямое взаимодействие с средами разработки, бизнес-инструментами и API. Ваш ИИ ассистент не просто обсуждает код — он может видеть и взаимодействовать с вашим репозиторием.
  3. Безопасность по замыслу: Модель клиент-хост-сервер создает четкие границы безопасности. Организации могут внедрять детализированные средства контроля доступа, сохраняя при этом преимущества ИИ помощи. Больше не нужно выбирать между безопасностью и возможностями.

Видеть — значит верить: MCP в действии

Давайте настроим практический пример с использованием приложения Claude Desktop и инструмента Brave Search MCP. Это позволит Claude искать в интернете в реальном времени:

1. Установите Claude Desktop

2. Получите ключ API Brave

3. Создайте файл конфигурации

open ~/Library/Application\ Support/Claude
touch ~/Library/Application\ Support/Claude/claude_desktop_config.json

а затем измените файл так, чтобы он выглядел следующим образом:


{
"mcpServers": {
"brave-search": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-brave-search"
],
"env": {
"BRAVE_API_KEY": "YOUR_API_KEY_HERE"
}
}
}
}

4. Перезапустите приложение Claude Desktop

На правой стороне приложения вы заметите два новых инструмента (выделены красным кругом на изображении ниже) для поиска в интернете с использованием инструмента Brave Search MCP.

После настройки трансформация становится бесшовной. Спросите Claude о последней игре Манчестер Юнайтед, и вместо того чтобы полагаться на устаревшие обучающие данные, он выполняет поиск в интернете в реальном времени, чтобы предоставить точную и актуальную информацию.

Большая картина: Почему MCP меняет все

Последствия здесь выходят далеко за рамки простого поиска в интернете. MCP создает новую парадигму для помощи ИИ:

  1. Интеграция инструментов: ИИ ассистенты теперь могут использовать любой инструмент с API. Подумайте об операциях с Git, запросах к базе данных или сообщениях в Slack.
  2. Привязка к реальному миру: Получая доступ к актуальным данным, ответы ИИ становятся привязанными к реальности, а не к обучающим данным.
  3. Расширяемость: Протокол разработан для расширения. По мере появления новых инструментов и API они могут быть быстро интегрированы в экосистему MCP.

Что дальше для MCP

Мы только начинаем видеть, что возможно с MCP. Представьте себе ИИ ассистентов, которые могут:

  • Получать и анализировать рыночные данные в реальном времени
  • Непосредственно взаимодействовать с вашей средой разработки
  • Получать доступ и суммировать внутреннюю документацию вашей компании
  • Координировать работу между несколькими бизнес-инструментами для автоматизации рабочих процессов

Путь вперед

MCP представляет собой фундаментальный сдвиг в том, как мы думаем о возможностях ИИ. Вместо того чтобы строить более крупные модели с большими окнами контекста, мы создаем более умные способы для ИИ взаимодействовать с существующими системами и данными.

Для разработчиков, аналитиков и технологических лидеров MCP открывает новые возможности для интеграции ИИ. Дело не только в том, что знает ИИ — дело в том, что он может сделать.

Настоящая революция в ИИ может заключаться не в увеличении моделей. Она может заключаться в том, чтобы сделать их более связанными. И с MCP эта революция уже здесь.

Революция с открытым исходным кодом от DeepSeek: Взгляд из закрытого саммита по ИИ

· 6 минут чтения
Lark Birdy
Chief Bird Officer

Революция с открытым исходным кодом от DeepSeek: Взгляд из закрытого саммита по ИИ

DeepSeek захватывает мир ИИ. Только обсуждения вокруг DeepSeek-R1 не успели остыть, как команда сделала еще один громкий анонс: открытая мультимодальная модель Janus-Pro. Темп головокружительный, амбиции ясны.

Революция с открытым исходным кодом от DeepSeek: Взгляд из закрытого саммита по ИИ

Два дня назад группа ведущих исследователей ИИ, разработчиков и инвесторов собралась для закрытого обсуждения, организованного Шисяном, сосредоточенного исключительно на DeepSeek. В течение трех часов они анализировали технические инновации DeepSeek, организационную структуру и более широкие последствия его роста — на бизнес-модели ИИ, вторичные рынки и долгосрочную траекторию исследований ИИ.

Следуя принципу прозрачности с открытым исходным кодом DeepSeek, мы открываем наши коллективные мысли для общественности. Вот основные выводы из обсуждения, охватывающие стратегию DeepSeek, его технические прорывы и влияние, которое он может оказать на индустрию ИИ.

DeepSeek: Тайна и миссия

  • Основная миссия DeepSeek: Генеральный директор Лян Вэньфэн не просто еще один предприниматель в области ИИ — он инженер в душе. В отличие от Сэма Альтмана, он сосредоточен на техническом исполнении, а не только на видении.
  • Почему DeepSeek заслужил уважение: Его архитектура MoE (смесь экспертов) является ключевым отличием. Ранняя репликация модели o1 от OpenAI была лишь началом — настоящая задача заключается в масштабировании с ограниченными ресурсами.
  • Масштабирование без благословения NVIDIA: Несмотря на утверждения о наличии 50 000 графических процессоров, DeepSeek, вероятно, работает с примерно 10 000 устаревших A100 и 3 000 предзапретных H800. В отличие от американских лабораторий, которые бросают вычислительные мощности на каждую проблему, DeepSeek вынужден стремиться к эффективности.
  • Истинный фокус DeepSeek: В отличие от OpenAI или Anthropic, DeepSeek не зациклен на «ИИ, служащем людям». Вместо этого он стремится к самому интеллекту. Это может быть его секретным оружием.

Исследователи против последователей: законы силы в ИИ

  • Разработка ИИ — это ступенчатая функция: Стоимость догоняющих в 10 раз ниже, чем у лидеров. «Последователи» используют прошлые прорывы за небольшую часть стоимости вычислений, в то время как «исследователи» должны двигаться вперед вслепую, неся огромные расходы на НИОКР.
  • Сможет ли DeepSeek превзойти OpenAI? Это возможно, но только если OpenAI оступится. ИИ все еще является открытой проблемой, и подход DeepSeek к моделям рассуждений — это сильная ставка.

Технические инновации DeepSeek

1. Конец контролируемой тонкой настройки (SFT)?

  • Самое разрушительное утверждение DeepSeek: SFT может больше не быть необходимым для задач рассуждения. Если это правда, это знаменует собой смену парадигмы.
  • Но не так быстро… DeepSeek-R1 все еще полагается на SFT, особенно для выравнивания. Настоящий сдвиг заключается в том, как используется SFT — более эффективное дистиллирование задач рассуждения.

2. Эффективность данных: настоящая защита

  • Почему DeepSeek уделяет приоритетное внимание маркировке данных: Сообщается, что Лян Вэньфэн сам маркирует данные, подчеркивая их важность. Успех Tesla в автономном вождении был достигнут благодаря тщательной человеческой аннотации — DeepSeek применяет ту же строгость.
  • Мультимодальные данные: еще не готовы — несмотря на выпуск Janus-Pro, мультимодальное обучение остается чрезмерно дорогим. Ни одна лаборатория еще не продемонстрировала убедительных достижений.

3. Дистилляция моделей: палка о двух концах

  • Дистилляция повышает эффективность, но снижает разнообразие: это может ограничить возможности моделей в долгосрочной перспективе.
  • «Скрытый долг» дистилляции: без понимания фундаментальных проблем обучения ИИ, полагаясь на дистилляцию, можно столкнуться с непредвиденными трудностями, когда появятся архитектуры следующего поколения.

4. Награда за процесс: новый рубеж в выравнивании ИИ

  • Контроль результатов определяет потолок: обучение с подкреплением на основе процессов может предотвратить взлом, но верхняя граница интеллекта все еще зависит от обратной связи, основанной на результатах.
  • Парадокс RL: у больших языковых моделей (LLM) нет определенного условия победы, как в шахматах. AlphaZero работал, потому что победа была бинарной. Рассуждения ИИ лишены этой ясности.

Почему OpenAI не использует методы DeepSeek?

  • Вопрос фокуса: OpenAI уделяет приоритетное внимание масштабу, а не эффективности.
  • «Скрытая война ИИ» в США: OpenAI и Anthropic могли игнорировать подход DeepSeek, но это будет недолго. Если DeepSeek окажется жизнеспособным, ожидайте изменения направления исследований.

Будущее ИИ в 2025 году

  • За пределами трансформеров? ИИ, вероятно, разделится на разные архитектуры. Область все еще зациклена на трансформерах, но могут появиться альтернативные модели.
  • Нереализованный потенциал RL: обучение с подкреплением остается недооцененным за пределами узких областей, таких как математика и программирование.
  • Год ИИ-агентов? Несмотря на ажиотаж, ни одна лаборатория еще не представила прорывного ИИ-агента.

Перейдут ли разработчики на DeepSeek?

  • Пока нет. Превосходные возможности OpenAI в кодировании и следовании инструкциям все еще дают ему преимущество.
  • Но разрыв сокращается. Если DeepSeek сохранит импульс, разработчики могут перейти в 2025 году.

Ставка OpenAI Stargate в $500 млрд: имеет ли она смысл?

  • Рост DeepSeek ставит под сомнение доминирование NVIDIA. Если эффективность превзойдет масштабирование грубой силы, суперкомпьютер OpenAI за $500 млрд может показаться чрезмерным.
  • Потратит ли OpenAI действительно $500 млрд? SoftBank является финансовым спонсором, но у него нет ликвидности. Исполнение остается неопределенным.
  • Meta реверсирует DeepSeek. Это подтверждает его значимость, но остается неясным, сможет ли Meta адаптировать свою дорожную карту.

Влияние на рынок: победители и проигравшие

  • Краткосрочная перспектива: акции производителей чипов для ИИ, включая NVIDIA, могут столкнуться с волатильностью.
  • Долгосрочная перспектива: история роста ИИ остается неизменной — DeepSeek просто доказывает, что эффективность важна не меньше, чем сырая мощность.

Открытый исходный код против закрытого: новый фронт борьбы

  • Если модели с открытым исходным кодом достигнут 95% производительности закрытых моделей, вся бизнес-модель ИИ изменится.
  • DeepSeek вынуждает OpenAI действовать. Если открытые модели продолжат улучшаться, проприетарный ИИ может стать нежизнеспособным.

Влияние DeepSeek на глобальную стратегию ИИ

  • Китай догоняет быстрее, чем ожидалось. Разрыв в ИИ между Китаем и США может составлять всего 3-9 месяцев, а не два года, как считалось ранее.
  • DeepSeek — это доказательство концепции для стратегии ИИ Китая. Несмотря на ограничения вычислительных мощностей, инновации, основанные на эффективности, работают.

Заключительное слово: видение важнее технологий

  • Настоящее отличие DeepSeek — его амбиции. Прорывы в ИИ происходят от расширения границ интеллекта, а не просто от совершенствования существующих моделей.
  • Следующая битва — это рассуждения. Тот, кто станет пионером следующего поколения моделей рассуждений ИИ, определит траекторию индустрии.

Мыслительный эксперимент: Если бы у вас была одна возможность задать вопрос генеральному директору DeepSeek Ляну Вэньфэну, что бы это было? Какой ваш лучший совет для компании в процессе масштабирования? Оставьте свои мысли — выдающиеся ответы могут получить приглашение на следующий закрытый саммит по ИИ.

DeepSeek открыл новую главу в ИИ. Останется ли он в истории, еще предстоит выяснить.

Анализ индустрии ИИ 2025 года: победители, проигравшие и критические ставки

· 5 минут чтения
Lark Birdy
Chief Bird Officer

Введение

Ландшафт ИИ претерпевает сейсмические изменения. За последние две недели мы провели закрытое обсуждение с ведущими исследователями и разработчиками ИИ, раскрывая захватывающие инсайты о траектории индустрии в 2025 году. То, что возникло, — это сложная перестройка власти, неожиданные вызовы для устоявшихся игроков и критические точки перегиба, которые будут формировать будущее технологий.

Это не просто отчет — это карта будущего индустрии. Давайте погрузимся в победителей, проигравших и критические ставки, определяющие 2025 год.

Анализ индустрии ИИ 2025 года: победители, проигравшие и критические ставки

Победители: новая структура власти

Anthropic: прагматичный пионер

Anthropic выделяется как лидер в 2025 году, движимый ясной и прагматичной стратегией:

  • Протокол управления моделями (MCP): MCP — это не просто техническая спецификация, а фундаментальный протокол, направленный на создание отраслевых стандартов для кодирования и агентских рабочих процессов. Подумайте о нем как о TCP/IP для эры агентов — амбициозный шаг, чтобы позиционировать Anthropic в центре интероперабельности ИИ.
  • Мастерство в инфраструктуре: Фокус Anthropic на эффективности вычислений и дизайне пользовательских чипов демонстрирует дальновидность в решении проблем масштабируемости развертывания ИИ.
  • Стратегические партнерства: Сосредоточившись исключительно на создании мощных моделей и передаче дополнительных возможностей партнерам, Anthropic способствует созданию совместной экосистемы. Их модель Claude 3.5 Sonnet остается выдающейся, удерживая первое место в приложениях для кодирования в течение шести месяцев — вечность в терминах ИИ.

Google: чемпион вертикальной интеграции

Доминирование Google обусловлено его непревзойденным контролем над всей цепочкой создания стоимости ИИ:

  • Инфраструктура от начала до конца: Пользовательские TPU Google, обширные центры обработки данных и тесная интеграция между кремнием, программным обеспечением и приложениями создают непреодолимый конкурентный ров.
  • Производительность Gemini Exp-1206: Ранние испытания Gemini Exp-1206 установили новые стандарты, подтверждая способность Google оптимизировать всю стеку.
  • Решения для предприятий: Богатая внутренняя экосистема Google служит испытательным полигоном для решений по автоматизации рабочих процессов. Их вертикальная интеграция позволяет им доминировать в корпоративном ИИ так, как ни чисто ИИ-компании, ни традиционные облачные провайдеры не могут соперничать.

Проигравшие: сложные времена впереди

OpenAI: на перепутье

Несмотря на ранний успех, OpenAI сталкивается с нарастающими вызовами:

  • Организационные проблемы: Уходы высокопрофильных сотрудников, таких как Алек Радфорд, сигнализируют о возможном внутреннем несоответствии. Подрывает ли поворот OpenAI к потребительским приложениям его фокус на AGI?
  • Стратегические ограничения: Успех ChatGPT, хотя и коммерчески ценный, может ограничивать инновации. Пока конкуренты исследуют агентские рабочие процессы и приложения корпоративного уровня, OpenAI рискует быть зажатым в пространстве чат-ботов.

Apple: упущенная волна ИИ

Ограниченные достижения Apple в области ИИ угрожают ее давнему доминированию в мобильных инновациях:

  • Стратегические слепые зоны: Поскольку ИИ становится центральным элементом мобильных экосистем, отсутствие значительных вкладов Apple в решения с ИИ от начала до конца может подорвать ее основной бизнес.
  • Конкурентная уязвимость: Без значительного прогресса в интеграции ИИ в свою экосистему Apple рискует отстать от конкурентов, которые быстро внедряют инновации.

Критические ставки на 2025 год

Возможности моделей: великое расслоение

Индустрия ИИ стоит на перепутье с двумя возможными будущими:

  1. Прыжок к AGI: Прорыв в AGI может сделать текущие приложения устаревшими, мгновенно изменив индустрию.
  2. Постепенная эволюция: Более вероятно, что постепенные улучшения будут двигать практическими приложениями и автоматизацией от начала до конца, отдавая предпочтение компаниям, сосредоточенным на удобстве использования, а не на фундаментальных прорывах.

Компаниям необходимо найти баланс между поддержанием фундаментальных исследований и предоставлением немедленной ценности.

Эволюция агентов: следующий рубеж

Агенты представляют собой трансформационный сдвиг во взаимодействии человека и ИИ.

  • Управление контекстом: Предприятия выходят за рамки простых моделей запроса-ответа, чтобы включить контекстное понимание в рабочие процессы. Это упрощает архитектуры, позволяя приложениям эволюционировать с возможностями моделей.
  • Сотрудничество человека и ИИ: Баланс между автономией и контролем является ключевым. Инновации, такие как MCP от Anthropic, могут заложить основу для магазина приложений агентов, обеспечивая бесшовное взаимодействие между агентами и корпоративными системами.

Взгляд в будущее: следующие мега-платформы

Эра операционных систем ИИ

ИИ готов переопределить парадигмы платформ, создавая новые "операционные системы" для цифровой эпохи:

  • Модели-основы как инфраструктура: Модели становятся платформами сами по себе, с разработкой API-first и стандартизированными протоколами агентов, стимулирующими инновации.
  • Новые парадигмы взаимодействия: ИИ выйдет за рамки традиционных интерфейсов, интегрируясь бесшовно в устройства и окружающие среды. Приближается эра робототехники и носимых агентов ИИ.
  • Эволюция оборудования: Специализированные чипы, вычисления на краю и оптимизированные форм-факторы оборудования ускорят внедрение ИИ в различных отраслях.

Заключение

Индустрия ИИ вступает в решающую фазу, где на передний план выходят практическое применение, инфраструктура и взаимодействие человека и ИИ. Победители будут превосходить в:

  • Предоставлении решений от начала до конца, которые решают реальные проблемы.
  • Специализации в вертикальных приложениях, чтобы обогнать конкурентов.
  • Построении сильной, масштабируемой инфраструктуры для эффективного развертывания.
  • Определении парадигм взаимодействия человека и ИИ, которые балансируют автономию и контроль.

Это критический момент. Компании, которые добьются успеха, будут теми, кто превратит потенциал ИИ в ощутимую, трансформационную ценность. По мере того как 2025 год разворачивается, гонка за определение следующих мега-платформ и экосистем уже началась.

Что вы думаете? Мы на пороге прорыва в AGI, или доминирует постепенный прогресс? Поделитесь своими мыслями и присоединяйтесь к обсуждению.

Эйрдроп Cuckoo × IoTeX: Cuckoo Chain расширяется на IoTeX как Layer 2

· 3 минут чтения
Lark Birdy
Chief Bird Officer

Cuckoo Network с радостью объявляет о своем расширении на IoTeX как решение Layer 2, привнося свою децентрализованную AI инфраструктуру в процветающую экосистему IoTeX. Это стратегическое партнерство объединяет опыт Cuckoo в обслуживании AI моделей с надежной инфраструктурой MachineFi IoTeX, создавая новые возможности для обеих сообществ.

Расширение Cuckoo Network

Необходимость

Пользователям и разработчикам IoTeX необходим доступ к эффективным, децентрализованным AI вычислительным ресурсам, в то время как создатели AI приложений требуют масштабируемой блокчейн инфраструктуры. Создавая на базе IoTeX, Cuckoo Chain удовлетворяет эти потребности, расширяя свой децентрализованный AI рынок на новую экосистему.

Решение

Cuckoo Chain на IoTeX предлагает:

  • Бесшовную интеграцию с инфраструктурой MachineFi IoTeX
  • Снижение транзакционных издержек для обслуживания AI моделей
  • Повышенную масштабируемость для децентрализованных AI приложений
  • Кросс-чейн совместимость между IoTeX и Cuckoo Chain

Детали Эйрдропа

В честь этого расширения Cuckoo Network запускает кампанию эйрдропа для участников сообществ IoTeX и Cuckoo. Участники могут заработать токены $CAI через различные активности:

  1. Ранние пользователи из экосистемы IoTeX
  2. GPU майнеры, вносящие вклад в сеть
  3. Активное участие в кросс-чейн активностях
  4. Вовлеченность в сообщество и вклад в развитие

Цитата от Руководства

"Создание Cuckoo Chain как Layer 2 на IoTeX является значительным этапом в нашей миссии по децентрализации AI инфраструктуры," говорит Дора Нода, CPO Cuckoo Network. "Это сотрудничество позволяет нам предоставить эффективные, доступные AI вычисления в инновационную экосистему MachineFi IoTeX, расширяя наш децентрализованный AI рынок."

Часто задаваемые вопросы

В: Что делает L2 на IoTeX уникальным для Cuckoo Chain?

О: L2 на IoTeX для Cuckoo Chain уникально сочетает децентрализованное обслуживание AI моделей с инфраструктурой MachineFi IoTeX, обеспечивая эффективные, экономически выгодные AI вычисления для IoT устройств и приложений.

В: Как я могу участвовать в эйрдропе?

О: Посетите https://cuckoo.network/portal/airdrop?referer=CuckooNetworkHQ, чтобы выполнить квалификационные действия и получить награды.

В: Как я могу получить больше $CAI?

  • Стейкинг токенов $CAI
  • Запуск узла GPU майнера
  • Участие в кросс-чейн транзакциях
  • Вклад в развитие сообщества

В: Каковы технические требования для GPU майнеров?

О: GPU майнеры нуждаются в:

  • NVIDIA GTX 3080, L4 или выше
  • Минимум 8GB RAM
  • Стейк и быть в числе топ-10 майнеров по голосованию $CAI
  • Надежное интернет-соединение Для подробных инструкций по настройке посетите нашу документацию на cuckoo.network/docs

В: Какие преимущества это приносит пользователям IoTeX?

О: Пользователи IoTeX получают доступ к:

  • Децентрализованным AI вычислительным ресурсам
  • Сниженным транзакционным издержкам для AI услуг
  • Интеграции с существующими приложениями MachineFi
  • Новым возможностям заработка через GPU майнинг и стейкинг

В: Как работает кросс-чейн функциональность?

О: Пользователи смогут бесшовно перемещать активы между IoTeX, Arbitrum и Cuckoo Chain, используя нашу мостовую инфраструктуру, обеспечивая единую ликвидность и совместимость между экосистемами. Мост Arbitrum запущен, а мост IoTeX еще в разработке.

В: Каков график запуска?

О: График:

  • Неделя 8 января: Начало распределения эйрдропа на основной сети Cuckoo Chain
  • Неделя 29 января: Развертывание моста между IoTeX и Cuckoo Chain
  • Неделя 12 февраля: Полный запуск платформы автономных агентов

В: Как разработчики могут строить на IoTeX L2 от Cuckoo Chain?

О: Разработчики могут использовать знакомые инструменты и языки Ethereum, так как Cuckoo Chain сохраняет полную совместимость с EVM. Полная документация и ресурсы для разработчиков будут доступны на cuckoo.network/docs.

В: Какова общая аллокация эйрдропа?

О: Кампания эйрдропа “IoTeX x Cuckoo” распределит часть от общей 1‰ аллокации, зарезервированной для ранних пользователей и членов сообщества из общего объема в 1 миллиард токенов $CAI.

Контактная информация

Для получения дополнительной информации присоединяйтесь к нашему сообществу:

Ritual: Ставка в $25M на то, чтобы заставить блокчейны думать

· 9 минут чтения
Lark Birdy
Chief Bird Officer

Ritual, основанный в 2023 году бывшим инвестором Polychain Нираджем Пант и Акилешем Потти, является амбициозным проектом на пересечении блокчейна и ИИ. Поддерживаемый финансированием в размере $25M в рамках серии A, возглавляемой Archetype и стратегическими инвестициями от Polychain Capital, компания стремится устранить критические пробелы в инфраструктуре для обеспечения сложных взаимодействий на цепочке и вне её. С командой из 30 экспертов из ведущих учреждений и компаний, Ritual разрабатывает протокол, который интегрирует возможности ИИ непосредственно в блокчейн-среды, нацеливаясь на такие случаи использования, как смарт-контракты, генерируемые на естественном языке, и динамические кредитные протоколы, управляемые рынком.

Ritual: Ставка в $25M на то, чтобы заставить блокчейны думать

Почему клиентам нужен Web3 для ИИ

Интеграция Web3 и ИИ может устранить многие ограничения, наблюдаемые в традиционных централизованных системах ИИ.

  1. Децентрализованная инфраструктура помогает снизить риск манипуляций: когда вычисления ИИ и результаты моделей выполняются несколькими независимыми узлами, становится гораздо сложнее для какого-либо одного субъекта — будь то разработчик или корпоративный посредник — подделывать результаты. Это укрепляет доверие пользователей и прозрачность в приложениях, управляемых ИИ.

  2. Web3-нативный ИИ расширяет возможности смарт-контрактов на цепочке за пределы простой финансовой логики. С ИИ в цикле контракты могут реагировать на данные рынка в реальном времени, запросы, сгенерированные пользователями, и даже сложные задачи вывода. Это позволяет использовать такие случаи, как алгоритмическая торговля, автоматизированные кредитные решения и взаимодействия в чате (например, FrenRug), которые были бы невозможны при существующих изолированных API ИИ. Поскольку результаты ИИ проверяемы и интегрированы с активами на цепочке, эти решения с высокой стоимостью или высокой ставкой могут выполняться с большим доверием и меньшим количеством посредников.

  3. Распределение рабочей нагрузки ИИ по сети может потенциально снизить затраты и повысить масштабируемость. Хотя вычисления ИИ могут быть дорогими, хорошо спроектированная среда Web3 использует глобальный пул вычислительных ресурсов, а не одного централизованного поставщика. Это открывает более гибкое ценообразование, улучшенную надежность и возможность для непрерывных рабочих процессов ИИ на цепочке — все это подкреплено общими стимулами для операторов узлов предлагать свои вычислительные мощности.

Подход Ritual

Система имеет три основных уровня — Infernet Oracle, Ritual Chain (инфраструктура и протокол) и Нативные приложения — каждый из которых разработан для решения различных задач в пространстве Web3 x ИИ.

1. Infernet Oracle

  • Что он делает Infernet — это первый продукт Ritual, который действует как мост между смарт-контрактами на цепочке и вычислениями ИИ вне цепочки. Вместо того чтобы просто извлекать внешние данные, он координирует задачи вывода моделей ИИ, собирает результаты и возвращает их на цепочку в проверяемом виде.
  • Ключевые компоненты
    • Контейнеры: Безопасные среды для размещения любых рабочих нагрузок ИИ/МО (например, ONNX, Torch, модели Hugging Face, GPT-4).
    • infernet-ml: Оптимизированная библиотека для развертывания рабочих процессов ИИ/МО, предлагающая готовые интеграции с популярными фреймворками моделей.
    • Infernet SDK: Предоставляет стандартизированный интерфейс, чтобы разработчики могли легко писать смарт-контракты, которые запрашивают и потребляют результаты вывода ИИ.
    • Узлы Infernet: Развернуты на таких сервисах, как GCP или AWS, эти узлы слушают запросы вывода на цепочке, выполняют задачи в контейнерах и возвращают результаты обратно на цепочку.
    • Оплата и проверка: Управляет распределением сборов (между вычислительными и проверочными узлами) и поддерживает различные методы проверки, чтобы гарантировать честное выполнение задач.
  • Почему это важно Infernet выходит за рамки традиционного оракула, проверяя вычисления ИИ вне цепочки, а не только каналы данных. Он также поддерживает планирование повторяющихся или чувствительных ко времени задач вывода, снижая сложность связывания задач, управляемых ИИ, с приложениями на цепочке.

2. Ritual Chain

Ritual Chain интегрирует функции, дружественные к ИИ, как на уровне инфраструктуры, так и на уровне протокола. Он разработан для обработки частых, автоматизированных и сложных взаимодействий между смарт-контрактами и вычислениями вне цепочки, выходя далеко за рамки того, что могут управлять типичные L1.

2.1 Инфраструктурный уровень

  • Что он делает Инфраструктура Ritual Chain поддерживает более сложные рабочие процессы ИИ, чем стандартные блокчейны. Через предварительно скомпилированные модули, планировщик и расширение EVM под названием EVM++, он стремится облегчить частые или потоковые задачи ИИ, надежные абстракции учетных записей и автоматизированные взаимодействия контрактов.

  • Ключевые компоненты

    • Предварительно скомпилированные модули

      :

      • Расширения EIP (например, EIP-665, EIP-5027) устраняют ограничения длины кода, уменьшают газ для подписей и обеспечивают доверие между задачами ИИ на цепочке и вне её.
      • Вычислительные предварительно скомпилированные модули стандартизируют фреймворки для вывода ИИ, доказательств с нулевым разглашением и тонкой настройки моделей в смарт-контрактах.
    • Планировщик: Устраняет зависимость от внешних контрактов "Keeper", позволяя задачам выполняться по фиксированному расписанию (например, каждые 10 минут). Критично для непрерывных действий, управляемых ИИ.

    • EVM++: Улучшает EVM с помощью нативной абстракции учетных записей (EIP-7702), позволяя контрактам автоматически одобрять транзакции на определенный период. Это поддерживает непрерывные решения, управляемые ИИ (например, автоматическая торговля), без вмешательства человека.

  • Почему это важно Встраивая функции, ориентированные на ИИ, непосредственно в свою инфраструктуру, Ritual Chain упрощает сложные, повторяющиеся или чувствительные ко времени вычисления ИИ. Разработчики получают более надежную и автоматизированную среду для создания по-настоящему "интеллектуальных" децентрализованных приложений.

2.2 Уровень протокола консенсуса

  • Что он делает Протокольный уровень Ritual Chain решает необходимость эффективного управления разнообразными задачами ИИ. Большие задачи вывода и гетерогенные вычислительные узлы требуют специальной логики рыночных сборов и нового подхода к консенсусу для обеспечения плавного выполнения и проверки.
  • Ключевые компоненты
    • Resonance (Рынок сборов):
      • Вводит роли "аукциониста" и "брокера" для сопоставления задач ИИ различной сложности с подходящими вычислительными узлами.
      • Использует почти исчерпывающее или "пакетное" распределение задач для максимизации пропускной способности сети, гарантируя, что мощные узлы обрабатывают сложные задачи без задержек.
    • Symphony (Консенсус):
      • Разделяет вычисления ИИ на параллельные подзадачи для проверки. Несколько узлов проверяют этапы процесса и результаты отдельно.
      • Предотвращает перегрузку сети большими задачами ИИ, распределяя рабочие нагрузки проверки по нескольким узлам.
    • vTune:
      • Демонстрирует, как проверять тонкую настройку моделей, выполненную узлами, на цепочке с использованием проверок данных "черного хода".
      • Иллюстрирует более широкую способность Ritual Chain обрабатывать более длительные, более сложные задачи ИИ с минимальными предположениями о доверии.
  • Почему это важно Традиционные рынки сборов и модели консенсуса испытывают трудности с тяжелыми или разнообразными рабочими нагрузками ИИ. Переработав оба, Ritual Chain может динамически распределять задачи и проверять результаты, расширяя возможности на цепочке далеко за пределы базовой логики токенов или контрактов.

3. Нативные приложения

  • Что они делают Основываясь на Infernet и Ritual Chain, нативные приложения включают рынок моделей и сеть валидации, демонстрируя, как функции, управляемые ИИ, могут быть нативно интегрированы и монетизированы на цепочке.
  • Ключевые компоненты
    • Рынок моделей:
      • Токенизирует модели ИИ (и, возможно, тонко настроенные варианты) как активы на цепочке.
      • Позволяет разработчикам покупать, продавать или лицензировать модели ИИ, с доходами, вознаграждаемыми создателям моделей и поставщикам вычислений/данных.
    • Сеть валидации и "Rollup-as-a-Service":
      • Предлагает внешним протоколам (например, L2) надежную среду для вычислений и проверки сложных задач, таких как доказательства с нулевым разглашением или запросы, управляемые ИИ.
      • Предоставляет индивидуальные решения rollup, использующие EVM++, функции планирования и дизайн рынка сборов Ritual.
  • Почему это важно Делая модели ИИ непосредственно торгуемыми и проверяемыми на цепочке, Ritual расширяет функциональность блокчейна в рынок услуг и наборов данных ИИ. Более широкая сеть также может использовать инфраструктуру Ritual для специализированных вычислений, формируя единый экосистему, где задачи и доказательства ИИ становятся дешевле и прозрачнее.

Развитие экосистемы Ritual

Видение Ritual как "открытой сети инфраструктуры ИИ" идет рука об руку с созданием надежной экосистемы. Помимо основного проектирования продукта, команда создала партнерства в области хранения моделей, вычислений, систем доказательств и приложений ИИ, чтобы обеспечить экспертную поддержку каждого уровня сети. В то же время Ritual активно инвестирует в ресурсы для разработчиков и рост сообщества, чтобы способствовать реальным случаям использования на своей цепочке.

  1. Сотрудничество в экосистеме
  • Хранение моделей и их целостность: Хранение моделей ИИ с помощью Arweave гарантирует, что они останутся неизменными.
  • Партнерства в области вычислений: IO.net предоставляет децентрализованные вычисления, соответствующие потребностям масштабирования Ritual.
  • Системы доказательств и уровень-2: Сотрудничество с Starkware и Arbitrum расширяет возможности генерации доказательств для задач на основе EVM.
  • Потребительские приложения ИИ: Партнерства с Myshell и Story Protocol приносят больше услуг, управляемых ИИ, на цепочку.
  • Уровень активов моделей: Pond, Allora и 0xScope предоставляют дополнительные ресурсы ИИ и расширяют границы ИИ на цепочке.
  • Улучшение конфиденциальности: Nillion укрепляет уровень конфиденциальности Ritual Chain.
  • Безопасность и стекинг: EigenLayer помогает обеспечивать безопасность и стекинг в сети.
  • Доступность данных: Модули EigenLayer и Celestia улучшают доступность данных, что жизненно важно для рабочих нагрузок ИИ.
  1. Расширение приложений
  • Ресурсы для разработчиков: Подробные руководства объясняют, как запускать контейнеры ИИ, использовать PyTorch и интегрировать GPT-4 или Mistral-7B в задачи на цепочке. Практические примеры — такие как создание NFT через Infernet — снижают барьеры для новичков.
  • Финансирование и акселерация: Акселератор Ritual Altar и проект Ritual Realm предоставляют капитал и наставничество командам, создающим децентрализованные приложения на Ritual Chain.
  • Известные проекты:
    • Anima: Многоагентный DeFi-ассистент, который обрабатывает запросы на естественном языке в области кредитования, обмена и стратегий доходности.
    • Opus: Токены мемов, созданные ИИ, с запланированными торговыми потоками.
    • Relic: Интегрирует модели прогнозирования, управляемые ИИ, в AMM, стремясь к более гибкой и эффективной торговле на цепочке.
    • Tithe: Использует МО для динамической настройки кредитных протоколов, улучшая доходность при снижении риска.

Согласуя проектирование продукта, партнерства и разнообразный набор децентрализованных приложений, управляемых ИИ, Ritual позиционирует себя как многофункциональный центр для Web3 x ИИ. Его подход, ориентированный на экосистему, дополненный обширной поддержкой разработчиков и реальными возможностями финансирования, закладывает основу для более широкого принятия ИИ на цепочке.

Перспективы Ritual

Планы по продукту и экосистема Ritual выглядят многообещающе, но многие технические пробелы остаются. Разработчикам все еще нужно решать фундаментальные проблемы, такие как настройка конечных точек вывода моделей, ускорение задач ИИ и координация нескольких узлов для крупномасштабных вычислений. На данный момент основная архитектура может справляться с более простыми случаями использования; настоящая задача — вдохновить разработчиков на создание более креативных приложений, управляемых ИИ, на цепочке.

В будущем Ritual может сосредоточиться меньше на финансах и больше на том, чтобы сделать вычислительные или модельные активы торгуемыми. Это привлекло бы участников и укрепило бы безопасность сети, связав токен цепи с практическими рабочими нагрузками ИИ. Хотя детали дизайна токена пока не ясны, очевидно, что видение Ritual заключается в том, чтобы вдохновить новое поколение сложных, децентрализованных приложений, управляемых ИИ, продвигая Web3 в более глубокую и креативную область.